Biogeosciences Discuss., 11, 8925–8967, 2014 www.biogeosciences-discuss.net/11/8925/2014/ doi:10.5194/bgd-11-8925-2014 © Author(s) 2014. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available.

Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system

Z. Yao¹, Y. Du¹, Y. Tao², X. Zheng¹, C. Liu¹, S. Lin², and K. Butterbach-Bahl³

¹State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China ²College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China

³Institute for Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen, Germany

Received: 1 April 2014 - Accepted: 2 June 2014 - Published: 13 June 2014

Correspondence to: X. Zheng (xunhua.zheng@post.iap.ac.cn)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for the rice cultivation. However, changes in soil water status and temperature ⁵ under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH₄), nitrous oxide (N₂O) and carbon dioxide (CO₂). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH₄ and N₂O fluxes and soil heterotrophic respiration (CO₂ emission) over a complete

- year, as well as the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), solely chicken manure (GCM) and combined urea and
- ¹⁵ chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N₂O emission and grain yield by 40 % and 9 %, respectively, and decreased annual CH₄ emission by 69 %, while GCRPS did not affect soil CO₂ emissions relative to the conventional paddy. The annual direct emission factors of N₂O were 4.01, 0.087 and 0.50 % for GUN, GCM and GUM, respectively, and
- 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha⁻¹ yr⁻¹, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80–11.02 Mg CO₂-eq ha⁻¹ yr⁻¹ for the conventional paddy and 3.05–9.37 Mg CO₂-eq ha⁻¹ yr⁻¹ for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effect from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions of CH₄ and N₂O and increased soil carbon seques-
- tration, resulting in the lowest NEGE $(3.05-5.00 \text{ Mg CO}_2\text{-}eq \text{ ha}^{-1} \text{ yr}^{-1})$. Accordingly, water-saving GCRPS with organic fertilizer amendments was considered the most

promising management regime for simultaneously achieving relatively high grain yield and reduced net greenhouse gas emission.

1 Introduction

Atmospheric methane (CH₄), nitrous oxide (N₂O) and carbon dioxide (CO₂) play an
⁵ important role in the biogeochemical carbon and nitrogen cycling, which substantially affects atmospheric chemistry and climate change (IPCC, 2007). Agriculture, without considering land use change, has been estimated to contribute approximately 10–12% to the total global anthropogenic emissions of greenhouse gases (GHGs), which accounts for about 50% and 60% of global CH₄ and N₂O emissions, respectively (Smith et al., 2007). In agricultural soils, these GHGs are all produced or consumed as a result of soil microbial processes, but the magnitude of the fluxes depends heavily on agricultural systems (Linquist et al., 2012). Aerobic upland agricultural systems primarily release N₂O and contribute little to the global atmospheric CH₄ budget (e.g., Adviento-Borbe et al., 2007; Wang et al., 2011), while paddy field and irrigated lowland

- rice cultivation systems are known to be significant sources of atmospheric CH₄, but also N₂O (e.g., Cai et al., 1997; Shang et al., 2011; Yao et al., 2012). Across 62 study sites and 328 observations worldwide, Linquist et al. (2012) estimated that the aggregate emission of CH₄ and N₂O in rice production systems was approximately four times higher than that of either upland wheat or maize systems, suggesting greater mitigation opportunities for rice production.
- ²⁰ opportunities for rice systems. Therefore, measurements of GHG fluxes from different rice-based cropping systems are of regional and global significance.

Rice is the major staple food for more than 3 billion people worldwide, accounting for approximately 20% of its overall energy intake (FAO, 2011, *http://faostat.fao.org*). To meet the food demand of a growing population, an annual increase in rice production in the range of 2, 10 million t is needed even the next 20 was (live stal).

²⁵ in the range of 8–10 million t is needed over the next 20 years (Liu et al., 2013). Meanwhile, because of intensified competition for freshwater resources between agricultural and industrial developments and as a result of rapid urbanization, it is anticipated that

by 2025 approximately 15–20 million ha of irrigated rice will suffer from water scarcity (Bouman, 2007). Overall, food security in the world is challenged by increasing food demand and threatened by declining water availability, and thus, a number of studies on water-saving irrigation managements for rice production systems have been carried

- out (e.g., Bouman and Tuong, 2001; Belder et al., 2004; Qu et al., 2012; Hou et al., 2012). However, the majority of these experiments were only focused on water use efficiency as well as rice productivity and little is known about the influences of management practices on GHG emissions from rice-based cropping systems. Accordingly, it is still unresolved if increased rice yields can be obtained at lower environmental costs, i.e., decreased irrigation water demand and at the same time decreased GHG
- 10

emissions (Bouman et al., 2006). China is the world's largest rice producer, contributing approximately 35 % to the to-

tal global rice production (Qu et al., 2012). Moreover, with regard to the consumption amount of irrigation water, China is the second in the world, with water use in the agri ¹⁵ cultural sector accounting for 62 % of total freshwater use (Wang et al., 2012). Furthermore, agriculture in China is thought of as a major source of national GHG emissions, which is responsible for approximately 17–20 % of annual anthropogenic GHG emissions (Wang et al., 2012). It is generally recognized that water management is one of the most important practices that impact CH₄ and N₂O emissions as well as grain

- yields in rice paddy fields (e.g., Minamikawa and Sakai, 2005; Kreye et al., 2007; Qin et al., 2010; Yang et al., 2012). Keeping rice paddies continuous waterlogged requires the consumption of large amounts of water (approximately 3000–5000 L kg⁻¹ grain, Bouman et al., 2002), and results in huge CH₄ emissions (approximately 24 g CH₄ kg⁻¹ grain, Linquist et al., 2012). In contrast, the management of midseason drainage which
- ²⁵ causes anaerobic and aerobic alternation in paddy fields, is considered to be an effective option for reducing CH_4 emissions and exerting a positive impact on rice yields (e.g., Cai et al., 1997; Yan et al., 2003; Zou et al., 2005a). Meanwhile, intermittent irrigation with midseason drainage is the standard procedure of Chinese farmers, and the introduction of this technology from the end of the last century onwards has helped to

significantly reduce CH₄ emissions from paddy fields (e.g., Yan et al., 2009). However, the demand of irrigation water for paddy rice cultivation still remains high and it is estimated that at current levels of water usage in China, the annual total water shortage is approximately 30–40 billion m³, and by 2050 the total water deficiency could reach 400 ⁵ billion m³, representing about 80 % of the current annual capacity (Liu et al., 2013).

Considering the decreasing water availability for agriculture and the increasing demand for rice production, water-saving management practices have become one of the Chinese basic policies (Hou et al., 2012), and various water-saving technologies have been proposed and practiced in the paddy fields (e.g., Xu et al., 2004; Kreye et al., 2007; Yang et al., 2010). One of the most premising technologies to express water-

- ¹⁰ 2007; Yang et al., 2012). One of the most promising technologies to overcome water scarcity and temperature limitation in rice cultivation, with the latter being specifically a problem in mountainous regions and in the rice production regions in the North of China, is named the ground cover rice production system (GCRPS). For the GCRPS practice, the soil surface is covered with a thin plastic film to reduce evaporation and
- ¹⁵ increase soil temperature. The technology allows growing traditional lowland rice cultivars at nearly saturated soil conditions with no standing water. This practice has been proven to reduce irrigation water demand by 40–60 % and increasing rice yields at long-term experimental sites by on average 10 % (Qu et al., 2012) and at regional scale by approximately 18 % (Liu et al., 2013).
- ²⁰ With the GCRPS technology being first tested approximately two decades ago, it is now widely disseminated and practiced on more than 4 million ha in several provinces of China, such as Hubei, Sichuan, Ningxia and Heilongjiang. However, changing soil conditions from permanent flooded to saturated and covering the soil with a thin plastic film has consequences for soil temperature and redox potential (Eh). Both environ-
- ²⁵ mental factors are expected to lead to changes in soil biogeochemical cycling of C and N. For example, the increase in soil Eh under GCRPS (Liu et al., 2013) is anticipated to reduce CH₄ emissions. However, the practice that enhances soil temperature and aeration status may result in increased N₂O emissions (Wang et al., 2011) and mineralization rates of soil organic carbon (Qu et al., 2012), which may offset or

overshadow the positive effect which can be achieved with regard to reduction in CH_4 emissions. Consequently, a comprehensive assessment of the impact of GCRPS on GHG fluxes needs to take into account CH_4 and N_2O emissions simultaneously and, in some cases, soil carbon sequestration changes. Failure to include one or more of these aspects may lead to biased views and misleading evaluations for this practice.

- To our knowledge, however, no study is available which has been quantifying the effect of GCRPS on the net greenhouse effect as compared to conventional paddy rice production systems.
- In response to these research needs, we launched a case study in which CH₄ and N₂O fluxes and soil respiration (CO₂) emissions as well as rice yields were measured simultaneously in an annual rice-based cropping system under conventional paddy and GCRPS practices. The main objectives of this study were to (a) characterize and quantify the CH₄, N₂O and CO₂ fluxes and the direct emission factors of fertilizer N across the annual rice-fallow systems, (b) better understand the key regulating factors on CH₄, N₂O and CO₂ fluxes from two contrasting practices, and (c) assess the efficacy of water-saving GCRPS technique to minimize the net greenhouse effect while sustaining crop yield.

2 Materials and methods

2.1 Site description and field experiment

- ²⁰ Our field measurements were performed in paddy fields (32°38′ N, 110°37′ E, approx. 234 m a.s.l.) in Shiyan city, Hubei province, Central China, where GCRPS was introduced in the 1990's and is now widely applied by local farmers because of water and temperature limitations for rice cultivation (Zhou et al., 2008). The field site is on the bottom of a small valley, which is located in a typical hilly agricultural area, where crop-
- ping regime is primarily dominated by annual rice paddy-fallow system. The region is exposed to the northern subtropical monsoon climate, with an annual mean air tem-

perature of 15.3 °C, an annual average rainfall of 834 mm, an annual total sunshine of 1835 h, and a frost-free period of 234 d. The topsoil (0–15 cm) of the experimental farm is of a sandy loam texture with $5.2 \pm 0.7 \%$ clay (< 0.002 mm), $33.7 \pm 2.5 \%$ silt (0.002–0.02 mm), and $61.1 \pm 3.2 \%$ sand (0.02–2 mm); it has a pH value of 6.2, an organic carbon content of $10.3 \pm 1.3 \text{ g kg}^{-1}$, total nitrogen content of $1.18 \pm 0.07 \text{ g kg}^{-1}$, and a bulk density of $1.30 \pm 0.04 \text{ g cm}^{-3}$.

In the present study, we investigated six fertilizer treatments under the two rice production systems (Table 1): two fertilizer treatments for the conventional paddy (i.e., CNN: no nitrogen fertilization as a control, and CUN: urea applied at a common rate)

- and four fertilizer treatments in GCRPS (i.e., GNN: no nitrogen fertilization as a control, GUN: urea applied at a common rate, GCM: chicken manure applied at a common N rate, and GUM: urea plus chicken manure at 1 : 1 nitrogen basis). Since our previous studies in the Jiangsu province showed that the use of organic matter in conventional paddy rice production systems leads to increased net GHG emissions (Yao
- et al., 2013a), only the treatments with urea application and the control were established for the conventional paddy (i.e., CNN and CUN). The treatments were arranged in a completely randomized block design with three replications (each plot with a size of 5m × 8m), giving a total of 18 plots. All plots were completely isolated by levees with plastic covering. The total N content and C : N ratio of the applied chicken manure were
- ²⁰ 1% and 13.6, respectively. Fertilizer, as a form of organic, inorganic or a mix of both, was applied once as basal fertilization at a rate of 150 kg N ha⁻¹ just before rice transplanting. In addition, all treatments received 45 kg P_2O_5 ha⁻¹ and 45 kg K_2O ha⁻¹ as basal fertilizers in the forms of Ca(H₂PO₄)₂ and KCl, respectively. In agreement with the local water regime, the experimental plots of conventional paddy were under a mode
- of flooding-midseason drainage-frequent waterlogging with intermittent irrigation (F-D-F). For GCRPS, to realize the goal of saving water and simultaneously satisfying rice growth, each plot was further separated into three raised beds (width 1.4 m and length 7.6 m) surrounded by 0.2 m wide and 0.15 m deep furrows that were filled with water to maintain soil water content near saturation. Each raised bed in GCRPS was covered

with a 0.005 mm thickness and 1.7 m width transparent polyethylene plastic film, and then holes were punched in plastic film using a punching bear for the transplantation of rice seedlings. After rice harvest, the rice straw was completely harvested and removed and all field plots were kept as fallows over the winter period. During the fallow period, the local farmers usually collected the plastic film from the GCRPS plots, and then plowed all the experimental fields to control weeds and insects.

2.2 Measurements of GHGs fluxes

The CH₄ and N₂O fluxes along with soil CO₂ emissions were measured in situ using static opaque manual gas sampling chambers (Yao et al., 2009), over the entire rice-fallow rotation under conventional paddy and GCRPS practices from May 2011 to April 2012. During the rice-growing season, to better evaluate the CH₄ and N₂O fluxes under GCRPS, two sizes of rectangular stainless-steel frames with the width 0.65 m × length 0.90 m × height 0.15 m and width 0.20 m × length 0.30 m × height 0.20 m were inserted into the soils of the raised bed and furrow, respectively, before rice trans-

- planting in each plot. In order to keep conditions inside the frame as close to the actual field status of the raised bed in GCRPS, the soil inside the frame was also covered with plastic film. The top edge of the frames had a groove for filling with water to hermetically close the rim of the top chamber. For the conventional paddy, only one frame with the size of width 0.65 m × length 0.90 m × height 0.15 m was put into the soil for each
- ²⁰ plot. To assess CO₂ emission from the bare soils of conventional paddy and GCRPS plots, a square stainless-steel frame with an area of 0.25 m^2 was driven into the soil at a depth of 0.40 m so as to inhibit outside root access, and maintained the bare soil inside throughout the rice-growing season. Based on the types of frames, three different sizes of chambers (i.e., with a bottom area of $0.65 \text{ m} \times 0.90 \text{ m}$ and a height of 0.50
- or 1.0 m depending on crop growth, a width $0.20 \text{ m} \times \text{length} 0.30 \text{ m} \times \text{height} 0.30 \text{ m}$, and a bottom area of 0.25 m^2 and a height of 0.50 m) were used for gas samplings. These chambers were fitted with two mini fans inside the top panel for mixing air and a hole of 2 cm diameter in the top panel for equilibrating the pressure during the placement of

them on the water groove of frames. This hole was kept closed during the air sampling by using a pressure balance tube which was determined in terms of the description of Hutchinson and Mosier (1981). During the fallow period, the frames both in the furrows and in the bare soils were removed because all field plots were drained and kept

⁵ bare. That is, only one size of frame with width 0.65m × length 0.90m × height 0.15m was maintained in place throughout the fallow season, except when it was removed for tillage on 4 January 2012, and thus, the fluxes of CH₄, N₂O and CO₂ were measured from the same chambers during the fallow period.

On each sampling day, chambers were temporarily mounted onto the frames, and gas samples for CH₄, N₂O and CO₂ detection were taken with a 60 mL polypropylene syringe at 0, 10, 20, 30, and 40 min after covering. During the gas collection, the air temperature inside the chamber was monitored using a digital thermometer (JM624, Tianjin Jinming Instrument Co. Ltd., China). Within 6 h after gas sampling, gas samples were simultaneously analyzed for CO₂, CH₄ and N₂O using a gas chromatograph (Agilent 7890A, Agilent Technologies, CA, USA) equipped with an electron capture detector

for N_2O detection and a flame ionization detector for CH_4 and CO_2 detection (a nickel catalyst applied for converting CO_2 to CH_4). The fluxes of CH_4 , N_2O and CO_2 were calculated from the rate of change in the gas concentrations in the enclosed chamber with time (Hutchinson and Livingston, 1993), and corrected for the chamber air temperature and ambient air pressure effects.

Generally, gas fluxes were measured between 08:00 and 11:00 LT in the morning, assuming that the fluxes at that time represent the approximate daily mean of GHGs fluxes, since the soil temperature during that period was close to the average daily soil temperature (Yao et al., 2009). Over the rice-growing season, flux measurements were

²⁵ usually done three to four times per week at intervals of 1 to 2 days, whereas during the fallow period flux measurements were done five times per week.

2.3 Auxiliary measurements

At times of GHGs flux measurements, soil Eh at a depth of 10 cm were monitored using platinum-tipped electrodes with a calomel reference electrode connected to a portable millivolt meter (FJA-5, Nanjing Chuan-Di Instrument Co. Ltd., China). Each of the 18

- ⁵ plots had two replicated electrodes that were permanently installed in the experimental fields during the rice-growing period. Over the rice-growing season, soil water contents in the GCRPS plots were automatically measured in 30 min intervals using Frequency Domain Reflector (FDR, RDS Technology Co., Ltd Jiangsu, Nanjing, China). The buriable FDR probes were embedded in the soil layer of 0–6 cm before rice transplanting.
- ¹⁰ For the conventional paddy plots, the field floodwater depth was monitored daily using an embedded vertical ruler. For the fallow period, soil (0–6 cm) moisture in all field plots was measured daily adjacent to the frames by using a portable FDR probe. Over the entire rice-fallow system, the air temperature and daily precipitation were recorded by an automatic meteorological station (HOBO, Onset Company, USA) at the experi-
- ¹⁵ mental farm. Soil (5 cm) temperature in the conventional paddy and GCRPS plots was automatically recorded in 15 min intervals using a HOBO temperature sensor (Onset Company, USA). To determine soil mineral N (NH₄⁺ and NO₃⁻) and dissolved organic C (DOC) contents, soil samples at a depth of 0–10 cm were randomly collected at two points in each plot using a 3 cm diameter gauge auger at weekly intervals. Following the
- ²⁰ collection, soil samples were bulked for each treatment, and extracted using 1 MKCl solution for NH_4^+ and NO_3^- determination and using $0.05 \,MK_2SO_4$ solution for DOC measurement. The soil extracts were frozen at $-18\,^\circ$ C and later analyzed with a continuous flow analyzer instrument (San++, Skalar Analytical B.V., the Netherlands) for simultaneous measurements of NH_4^+ , NO_3^- and DOC.
- ²⁵ The rice plants at physiological maturity were harvested manually from one subplot with a size of 1.4 m × 7.6 m in each experimental plot, and then separated into grain and straw. The yields of grain and straw were determined after oven drying at 70 °C to a constant weight, and then, each part was further processed and analyzed for C

and N contents (Qu et al., 2012). In order to determine the weight of root at maturity, all rice plants (including aboveground biomass and root until 40 cm soil depth) of eight randomly collected hills (approximately 0.3 m^2) were harvested in each plot, washed and separated for above- and below-ground biomass and dried to a constant weight.

5 2.4 Data processing and statistical analysis

The fluxes of CH_4 , N_2O and CO_2 for each treatment of a given sampling date were obtained by averaging fluxes of the three spatial replicates. The total cumulative fluxes of an individual gas over the rice season, fallow period and annual rotation cycle were directly calculated from the observed fluxes, using linear interpolation between sampling dates. The N_2O emission factor of fertilizer N applied to the soil was computed by subtracting the total cumulative emission of N_2O in the control from the corresponding total emissions in each fertilized treatment and dividing the result by the applied total amount of N fertilization. To assess the combined climatic impact from CH_4 and N_2O under the agronomic treatments, the aggregate emissions of CH_4 and N_2O (expressed in CO_2 equivalents) were calculated using the global warming potential indices of 25

¹⁵ In CO₂ equivalents) were calculated using the global warming potential indices of 25 and 298 for CH₄ and N₂O, respectively, over a 100 year time horizon (IPCC, 2007). As the net ecosystem exchanges (NEE) of CO₂ during the rice-growing season could not be measured with the opaque chamber method, they were estimated from the difference between net primary production (NPP) and heterotrophic respiration (R_h)

- as suggested by Liu and Greaver (2009), i.e., NEE = R_h NPP, in which the NPP was determined by summing up the weights of harvested aboveground biomass (including straw and grain) and root, and the R_h was estimated as the soil respiration from the bare soil (Raich and Tufekcioglu, 2000). The carbon sequestration capacity of the soil was calculated by integrating NEE estimates, the amount of carbon incorpo-
- ²⁵ rated through fertilization and the carbon amount harvested in the straw and grain, i.e., soil carbon sequestration capacity (Mg C ha⁻¹) = -NEE+Incorporated C-Harvested C. Here the negative NEE fluxes indicate net CO₂ uptake, and the negative values of carbon sequestration capacity indicate the net carbon losses from soil. It should be

noted that our present estimates of soil carbon sequestration capacity were quite preliminary and existed a certain degree of underestimation, due to not including root exudates. To calculate the complete GHG balance for conventional paddy and GCRPS treatments, the net ecosystem greenhouse gas exchange (NEGE) was estimated by integrating the CH₄ and N₂O fluxes and soil carbon sequestration capacity, i.e., NEGE (MgCO₂ – *eq* ha⁻¹) = 25 × CH₄ flux (kg C ha⁻¹) × 16/12/1000 + 298 × N₂O flux (kg N ha⁻¹) × 44/28/1000 – soil C sequestration (Mg C ha⁻¹) × 44/12. In this study, the negative value of NEGE indicates the net sink of atmospheric GHGs.

All statistical analyses were performed using SPSS 12.0 (SPSS Inc., Chicago, USA) and Origin 7.0 (Origin Lab Corporation, USA). Differences in cumulative emissions from the rice-fallow system as affected by different agronomic treatments were examined by using a one-way ANOVA with the Tukey's multiple range test. To estimate the relationships between soil environmental variables and GHGs emissions in the rice-growing season, multiple regression analyses were carried out with the stepwise procedure.

15 3 Results

3.1 Environmental drivers and rice production

The total amounts of rainfall were 597.8 and 281.2 mm for the rice and fallow seasons, respectively (Fig. 1a). Within the first two months after soil was covered by plastic film, soil temperature was 25.7 °C on average in GCRPS but 22.8 °C on average in the conventional paddy (Fig. 1b). Within the GCRPS plots, the chicken manure application generally increased soil temperature, with mean values of 24.3 and 25.2 for GUN and GCM, respectively. During the fallow period, both conventional paddy and GCRPS showed comparable results of soil temperature (mean: 10.2 vs. 9.9 °C).

For the conventional paddy, a floodwater layer of on average 2.6 ± 0.5 cm was maintained during the rice-growing season, except for the periods of midseason aeration and final drainage. For GCRPS, soil water content was generally kept at more

than 90% WFPS (water-filled pore space) until the final drainage before rice harvest (Fig. 1c). During the fallow period, there were no significant differences in soil water contents between GCRPS and conventional paddy. Both conventional paddy and GCRPS showed a comparable seasonality in soil Eh (Fig. 1d). However, soil Eh under ⁵ GCRPS was on average 73 % higher than that of conventional paddy.

Across the rice-growing season, the mean NH_4^+ content in the CNN (5.3 mg N kg⁻¹ SDW(soil dry weight)) and CUN (7.6 mg N kg $^{-1}$ SDW) treatments were 39 % and 15 %higher than that of the GNN and GUN, respectively (Fig. 2). In contrast, the seasonal mean NO_3^- contents under CNN (0.35 mg N kg⁻¹SDW) and CUN (0.50 mg N kg⁻¹SDW) were lower than their corresponding GNN and GUN treatments. Compared to the GUN, GCM reduced the NH_4^+ and NO_3^- contents by 20 % and 28 %, respectively. Application of GUM increased soil NH_4^+ and NO_3^- contents compared to GCM, but to a smaller extent than GUN. In addition, the mean DOC contents under conventional paddy (i.e.,

57.9 mg C kg⁻¹SDW for CNN and 52.7 mg C kg⁻¹SDW for CUN) were higher than those of the GNN (43.1 mg C kg⁻¹SDW) and GUN (36.6 mg C kg⁻¹SDW), but they were comparable to those of GUM and GCM. During the fallow period, all the fertilized treatments (CUN, GUN, GCM and GUM) had higher soil mineral N (NH $_4^+$ + NO $_3^-$) contents (11.8– 14.1 mg N kg⁻¹SDW) as compared to the controls (6.7–9.8 mg N kg⁻¹SDW).

The total yields of straw and grain and the uptake of C and N by the plants in the fertilized plots were significantly higher compared to the unfertilized controls regard-20 less of rice production system (P < 0.05, Table 2). Compared to the CNN, the GNN treatment significantly improved grain yields by 10 % (P < 0.05), though there was no significant difference in straw yields. In contrast, the grain yields did not differ between CUN and GUN. The chicken manure amendments under GCRPS (GCM and GUM) did

not influence grain yields, compared to CUN and GUN (Table 2). 25

3.2 Methane fluxes

During the rice-growing season, the CH_4 emissions increased steadily after rice transplanting and peak emissions were observed at the beginning of August for plots fertilized with urea (CUN and GUN) or being unfertilized (CNN and GNN). For plots fer-

- tilized with chicken manure (GCM and GUM), two periods with elevated CH₄ emissions were observed: the first one appeared immediately following fertilization, while the second occurred at the beginning of August (Fig. 3). Seasonal cumulative CH₄ emissions significantly varied with rice production system and fertilizer treatment (Table 3). Compared to the CNN, CUN significantly inhibited seasonal CH₄ emissions by 2000 (CD = 2.05) the the CONS of the CNN.
- ¹⁰ 33% (P < 0.05). Under GCRPS, there were similar temporal trends but varying in amplitudes of CH₄ emissions between the furrow and raised bed of each treatment (Figs. 3 and S1). Seasonal CH₄ emissions for the furrows ranged from 2.07 to 3.67 kg C ha⁻¹, which was on average 72% lower than those of the raised beds (P < 0.05). The seasonal mean CH₄ emissions under GCRPS, weighted by the areal extent of furrow and
- ¹⁵ raised bed, were 5.36, 6.65, 33.4 and 11.8 kg C ha⁻¹ for the GNN, GUN, GCM and GUM, respectively (Table 3). Averaging across GNN and GUN under GCRPS, the seasonal CH₄ emission was 6.00 ± 0.68 kg C ha⁻¹, which is 86% lower than that of the conventional paddy (*P* < 0.05), indicating that the conversion from conventional paddy to GCRPS inhibited CH₄ emissions substantially. Also, the CH₄ emissions from GCM and GUM under GCRPS were lower as compared to the conventional paddy.

Across sampling dates during the rice-growing season, CH_4 emissions were negatively correlated with soil Eh and positively with soil temperature (Table 4). For instance, soil temperature and Eh together explained approximately 46% of the observed temporal variation in CH_4 emission for CNN (Fig. 4).

In the following fallow season, there were no significant production system impacts or seasonal patterns (Fig. S2). Over the fallow period, soils of all treatments acted as weak sinks for atmospheric CH_4 , which ranged from -0.92 to -0.50 kg C ha⁻¹ (Table 3). Annual CH_4 emissions over the rice-fallow system ranged from 4.43 kg C ha⁻¹ yr⁻¹ for

the GNN to 51.7 kg C ha⁻¹ yr⁻¹ for the CNN plots. Across the plots with urea application and the control, annual CH₄ emission averaged 5.14 and 43.2 kg C ha⁻¹ yr⁻¹ for the GCRPS and conventional paddy, respectively, the former value was significantly lower than the latter one (P < 0.05, Table 3).

5 3.3 Nitrous oxide emissions

During the rice-growing season, the N₂O emissions from the unfertilized plots (CNN and GNN) were constantly low (< $8 \mu g N m^{-2} h^{-1}$, Fig. 5). The N₂O emissions from the fertilized plots (CUN, GUN, GCM and GUM) were relatively low and steady across the rice-growing season, apart from a pronounced peak following fertilization and a small spike following midseason drainage at the end of June. Among all the fertilizer treatments, the highest peak emission of N₂O appeared in the GUN plots, and N₂O emissions remained much higher as compared to the other treatments for almost 6 weeks following fertilization, although the emissions did fluctuate (Fig. 5). Similar to CH₄ emission, seasonal N₂O emissions were also affected by rice production system and fertilizer treatment. Under conventional paddy, CUN significantly increased N₂O emissions

- by 138 % relative to the CNN (P < 0.05), and the direct emission factor of N₂O was estimated to be 0.082 %. For the GCRPS plots, the magnitude of N₂O emissions from the furrows was significantly lower than from the raised beds (P < 0.05, Table 3), although they showed similar seasonal patterns (Figs. 5 and S1). The area-weighted seasonal
- 20 N₂O emissions were 0.12, 4.30, 0.15 and 0.33 kg N ha⁻¹ for the GNN, GUN, GCM and GUM, respectively. The direct emission factors of N₂O were estimated to be 2.79%, 0.023% and 0.14% for the GUN, GCM and GUM, respectively. Across GNN and GUN under GCRPS, the seasonal N₂O emission averaged 2.21 kg N ha⁻¹, which is remarkably higher than that of conventional paddy, indicating that the conversion from conventional paddy.
- tional paddy to GCRPS significantly stimulated N₂O emissions. In contrast, GCM and GUM only slightly increased N₂O emissions in comparison to the conventional paddy.

Across the rice-growing season, a positive linear correlation was found between N₂O emissions and soil NH₄⁺ contents or soil temperature, or both for all the fertilized treatments (Table 4). For example, Fig. 4b illustrates the relationship between soil temperature, NH₄⁺ content and N₂O emissions for the GUN.

⁵ During the fallow period, marked N₂O emissions were recorded mainly in late March and April after substantial rainfall events (Figs. 1a and 5). Although no fertilizer was applied in the fallow season, the cumulative N₂O emissions over this period were observed to be higher than those during the rice-growing season, except for the GUN treatment. Total N₂O emissions in the fallow season (ranging from 0.45 to
 ¹⁰ 2.60 kg N ha⁻¹) did not differ between the conventional paddy and GCRPS, but varied significantly among fertilizer treatments in each production system (Table 3).

Over the rice-fallow cropping cycle, annual N₂O emissions ranged from 0.54 kg N ha⁻¹ yr⁻¹ for the CNN to 6.64 kg N ha⁻¹ yr⁻¹ for the GUN plots (Table 3). Although there was no significant difference in annual N₂O emissions between CNN and GNN, GUN remarkably increased annual N₂O emission by 136 % relative to CUN (P < 0.05). In contrast, GUM did not significantly affect annual N₂O emission, and GCM even reduced annual N₂O emission by 73 %, compared to the CUN. The annual direct emission factor of N₂O was estimated to be 1.52 %, 4.01 %, 0.087 % and 0.50 % for the CUN, GUN, GCM and GUM, respectively.

$_{20}$ 3.4 Soil $R_{\rm h}$ emissions and estimates of NEE and soil carbon sequestration

Soil R_h emissions showed a slight peak in late August for the plots with urea application and the control (CNN, GNN, CUN and GUN). Similar results were observed in the GCM and GUM treatments, apart from a short flush following fertilization (Fig. 6). Over the rice-growing season, there were no significant differences in seasonal R_h emissions (ranging from 0.91 to 1.17 Mg C ha⁻¹) between the conventional paddy and GCRPS

²⁵ (ranging from 0.91 to 1.17 Mg C ha⁻¹) between the conventional paddy and GCRPS (Table 5). The soil R_h emission was significantly correlated with Eh under conventional paddy, while it was negatively correlated with WFPS under GCRPS (Table 4). For the

rice growth period, the NEE fluxes ranged between -6.51 and $-3.97 \text{ Mg C ha}^{-1}$ for conventional paddy and from -6.68 to $-4.35 \text{ Mg C ha}^{-1}$ for GCRPS, with no significant difference between them (Table 5).

- Soil CO₂ emissions from the conventional paddy and GCRPS showed similar seasonal patterns during the fallow period (Fig. 6). The total CO₂ emissions over this period ranged from 1.49 to 2.04 Mg C ha⁻¹, with no significant effect of rice production system (Table 5). Over the entire rice-fallow system, the annual soil CO₂ emissions and NEE fluxes ranged from 2.47 to 3.16 Mg C ha⁻¹ yr⁻¹ and -5.19 to -2.06 Mg C ha⁻¹ yr⁻¹, respectively, among the treatments. There was no significant effect of rice production system on both annual soil CO₂ emissions and NEE fluxes. The estimated annual soil carbon sequestration capacity ranged from -2.47 Mg C ha⁻¹ yr⁻¹ for CNN to -0.44 Mg C ha⁻¹ yr⁻¹ for GCM (Table 5). Across all treatments under GCRPS, the annual soil carbon sequestration capacity averaged -1.33 Mg C ha⁻¹ yr⁻¹, which is 44 % higher as compared to the conventional paddy, indicating that the conversion from contor ventional paddy to GCRPS had the potential to reduce carbon loss from soil.
 - 3.5 Estimates of net ecosystem greenhouse gas exchange (NEGE)

During the rice-growing season, total emissions of CH_4 and N_2O from GNN and GUN averaged 1235 kg CO_2 -eq ha⁻¹, which is approximately 19% lower than the conventional paddy (Table 5). The chick manure applications under GCRPS, especially GCM ²⁰ significantly reduced aggregate emissions of CH_4 and N_2O (P < 0.05), compared to the CUN and GUN. During the fallow period, the aggregate emissions of CH_4 and N_2O did not significantly differ between the conventional paddy and GCRPS. Over the entire annual cycle, the mean total emissions of CH_4 and N_2O across GNN and GUN tended to be lower as compared to the conventional paddy. Relative to the CUN and GUN, GCM and GUM significantly reduced annual aggregate emissions of CH_4 and N_2O (P < 0.05).

On the annual time basis, the NEGE ranged from 3.05 Mg CO_2 -eq ha⁻¹ for the GCM to 11.02 Mg CO_2 -eq ha⁻¹ for the CNN plots (Table 5). There were no significant differences in annual NEGE between the urea application and the control, irrespective of rice production systems. Compared to the conventional paddy, the annual NEGE were reduced by 19% on average under GCRPS across GNN and GUN. The GCM and GUM treatments reduced annual NEGE by 67% and 47% in comparison with GUN, respectively, and by 72% and 54% relative to the CUN, respectively. Accordingly, the lowest NEGE was achieved under the GCM and GUM plots for the fertilized treatment (Table 5).

10 **4 Discussion**

4.1 Key regulating factors of temporal variations of CH_4 and N_2O fluxes

In the conventional paddy, a relatively low CH₄ emission occurred before midseason drainage and pronounced CH₄ emissions were observed when the field was flooded again after the midseason drainage (Fig. 3a and b). Our findings are inconsistent with the common pattern of CH₄ emissions as reported by previous studies: steadily in-15 creasing CH₄ emission until midseason drainage, followed by a rapid decrease, and no recovery of CH₄ emission levels as compared to the pre-midseason period until harvest (e.g., Cai et al., 1997; Nishimura et al., 2004; Zou et al., 2005a; Dong et al., 2011). This indicated that the CH₄ emissions from hilly paddy fields could also be affected by the site-specific environmental factors such as soil temperature (Shang et al., 2011), apart 20 from soil Eh which is used as an index for the oxidation-reduction conditions regulated by water management (Minamikawa and Sakai, 2005). It has been reported that low temperatures suppress CH_4 fluxes (Castro et al., 1995), and thus, the low CH_4 emission during the continuous flooding period before midseason drainage indeed might be attributed to low soil temperatures at the start of the rice-growing period (on average 25

3°C lower as compared to the paddy fields in Jiangsu province). This interpretation is

further supported by the demonstrated correlations between CH_4 emissions and soil Eh as well as soil temperature for the conventional paddy (Table 4 and Fig. 4a). The CH_4 emissions in GCM and GUM under GCRPS were negatively correlated with soil Eh but not affected by soil temperature, highlighting the warming effect under GCRPS

⁵ alleviating the hypothesized temperature limitation of methanogenesis. In contrast, we did not observe that the seasonality of CH_4 emissions in GNN and GUN was affected by soil Eh or soil temperature, which is presumably due to the constantly low magnitude of CH_4 emissions (< 1.0 mg C m⁻² h⁻¹) from these two treatments.

Under conventional paddy, periods of high N₂O emissions were observed following N fertilization and midseason drainage events, respectively (Fig. 5b). This is in agreement with previous studies (Cai et al., 1997; Zou et al., 2005a; Yao et al., 2010) and shows that availability of N substrates and changes in soil water regimes are the major drivers of high N₂O emissions, which overrides the effect of soil temperature on nitrification and/or denitrification processes. However, the major regulating factors of N₂O emis-

- ¹⁵ sions in the fertilized treatments under GCRPS were soil NH_4^+ content and temperature (Table 4). These two regulating factors interacted positively (e.g., Fig. 4b) such that pronounced N₂O emissions mostly occurred following fertilization coupled with the obvious warming effect of GCRPS, agreeing with the findings of previous researches for comparable environments (e.g., Wang et al., 2011; Hu et al., 2013). In addition, during the
- ²⁰ fallow period the N₂O emissions in all the treatments remained low and elevated emissions were only recorded in late March and April (Fig. 5) when heavy rainfall (> 27 mm) increased the soil water content to approximately \geq 80 % WFPS (Fig. 1c). Similar rainfall driven peak emissions of N₂O during the non-flooded period of rice-based cropping systems have been observed also in previous studies elsewhere (Zheng et al., 2000;
- $_{\rm 25}$ Yao et al., 2010, 2013b) and further confirm that at soil water contents of 70–90 % WFPS pronounced N_2O emissions are likely to occur (Dobbie et al., 1999; Wang et al., 2011).

Discussion Pa	B(11, 8925–{	BGD 11, 8925–8967, 2014 Water-saving ground cover rice production system Z. Yao et al.						
aper Discussion	Water-savi cover rice sys Z. Yac							
Papei	Title	Page						
	Abstract	Introduction						
_	Conclusions	References						
Discus	Tables	Figures						
sior	14	►I.						
Pape	•	•						
T,	Back	Close						
	Full Scre	een / Esc						
scussi	Printer-frier	Printer-friendly Version						
on F	Interactive	Interactive Discussion						
aper	C	© 0 BY						

4.2 GCRPS and fertilizer practices affecting CH₄ and R_h fluxes

Numerous studies report on CH₄ emissions from rice paddies (e.g., Yagi et al., 1996; Sass et al., 1999; Yan et al., 2009), but only few studies measured CH₄ and N₂O fluxes simultaneously (e.g., Cai et al., 1997; Zou et al., 2005a; Linquist et al., 2012). To our
⁵ knowledge, no study is available reporting annual fluxes of N₂O and CH₄ and CO₂ for GCRPS, even though a decade ago first measurements were done (Dittert et al., 2002; Xu et al., 2004; Kreye et al., 2007). In this study, annual CH₄ emissions under conventional paddy varied between 34.6 and 51.7 kg C ha⁻¹ yr⁻¹, which was within the lower ranges (18–320 kg C ha⁻¹) reported by Xie et al. (2010) for Chinese conventional paddy fields. In comparison to the CNN, the urea application (CUN) significantly reduced annual CH₄ emissions (Table 3). It is well accepted that synthetic N fertilizers increase crop growth as well as alter CH₄ generating and oxidizing microbes, and thereby result in complex impacts on CH₄ emissions (Bodelier and Laanbroek, 2004; Cai et al., 2007; Liu and Greaver, 2009). Banger et al. (2012) conducted a comprehen-

- sive meta-analysis on the net effects of N fertilizers on CH₄ emission and found that in the majority of studies (98 of 155 datasets) N fertilization increased CH₄ emissions from rice paddies. The effect of N fertilization will be modified by water management of rice paddies: under the conditions of intermittent irrigation with midseason drainage, N fertilizers seem to stimulate methanotrophs leading to higher CH₄ oxidation in the
- ²⁰ paddy fields (Banger et al., 2012). Also in this study, midseason drainage which generally promotes aerobic soil conditions together with urea application obviously stimulate the CH₄ oxidation activity in our soils and decreased CH₄ emissions.

In comparison to the conventional paddy, on average, GCRPS across GNN and GUN decreased annual CH₄ emissions substantially (Table 3). It is generally recognized that ²⁵ water management has a close relationship with the redox status of soil (e.g., Minamikawa and Sakai, 2005). Average soil Eh under GCRPS were significantly higher than that of the conventional paddy (Fig. 1d) indicating that under GCRPS more oxi-

treatments with their more aerated soil conditions were likely to inhibit CH_4 production by methanogens and favor CH_4 consumption by methanotrophs, which integrally led to decreased CH_4 emissions. Although the CH_4 emissions under GCRPS were not affected by the urea application due to the negligible emissions from the GUN and GNN treatments. GCM significantly increased CH, emissions (Table 3). It has long

- ⁵ GNN treatments, GCM significantly increased CH₄ emissions (Table 3). It has long been shown that organic matter incorporation increases CH₄ emissions from paddy fields due to the increased supply of C substrates and energy for methanogens (Bhattacharyya et al., 2012), which is further corroborated by the evidence that soil DOC contents were significantly higher in GCM.
- ¹⁰ In this study, the annual R_h emissions from all the treatments ranged from 2.47 to $3.16 \text{ Mg C ha}^{-1} \text{ yr}^{-1}$ (Table 5). These values were within the range of soil R_h emissions obtained in the global zone (0.35 to 2190 g C m⁻² yr⁻¹), as reported by Bond-Lamberty and Thomson (2010). It is worth noting that soil R_h emissions during the rice-growing season did not differ between conventional paddy and GCRPS, although GCRPS in-
- ¹⁵ creased soil temperature. These results indicated that the nearly saturated soil water conditions under GCRPS might efficiently reduce the impact of soil temperature on CO₂ emissions, since the response of soil CO₂ emission to increased temperature was likely constrained and masked by soil water content (Maestre and Cortina, 2003). Actually, our statistical analysis revealed that soil CO₂ emissions under GCRPS were signifi-
- ²⁰ cantly correlated with WFPS, but were not affected by soil temperature (Table 4), which supports the above mentioned speculations. In addition, nutrients supplied via fertilization would be expected to influence soil CO₂ emission by increasing rhizosphere C input due to enhanced plant productivity and root residue production (Iqbal et al., 2009). In this study, GCM generally increased annual soil CO₂ emissions compared to
- ²⁵ GNN, which is consistent with other studies that organic amendments could enhance the bioavailability of soil C and microbial respiration (Lee et al., 2007; Bhattacharyya et al., 2012). In contrast, urea application did not affect soil microbial respiration (Table 5). In a review of more than 60 studies, Fog (1988) suggested that N fertilization showed no influence or a negative impact on decomposition of organic matter. Thus,

one can reasonably speculate that soil R_h emissions did not differ between urea fertilization and control, since they are the net results of organic matter decomposition by soil microorganisms. Similarly, a number of previous studies also reported no difference in soil CO₂ emission between control and synthetic N fertilizers (Rochette and Gregorich, 1998; Hu et al., 2004; Lee et al., 2007).

4.3 GCRPS and fertilizer practices affecting N₂O fluxes and direct emission factors

For the conventional paddy, total N_2O emissions during the rice-growing season were 0.089-0.21 kg N ha⁻¹, which is within the range of previously reported emissions (Akiyama et al., 2005). For the 53 studies considered in the Akiyama et al. (2005) for paddy fields with midseason drainage, N₂O emissions ranging from 0.026 to 4.42 kg N ha⁻¹. Under GCRPS, total N₂O emissions across the rice-growing period were 0.12-4.30 kg N ha⁻¹, which is comparable to previous estimates in water-saving paddy fields (Dittert et al., 2002; Kreye et al., 2007; Yang et al., 2012). It should be noted that although no fertilizer was applied in the following fallow season, cumulative 15 N_2O emissions over this period were up to 2.60 kg N ha⁻¹ (Table 3). This is likely a result of aerobic soil organic nitrogen mineralization during the upland fallow period, with associated productions of N_2O from nitrification and denitrification (Liu et al., 2010; Shang et al., 2011). In addition, the N_2O emissions during the fallow period tended to be higher in the fertilized than in the unfertilized plots (Table 3), showing that the effect 20 of fertilization on N₂O emissions is carried over into the following fallow period. This is also supported by the evidence that higher soil mineral N (NH₄⁺ + NO₃⁻) contents were observed for the fertilized treatments during the fallow period (Fig. 2).

Annual N₂O emission and the urea-induced direct emission factor in the CUN plots were 58 % and 62 % lower than those of the GUN plots, respectively, which is largely due to increases in N₂O emissions during the rice-growing season after conversion from conventional paddy to GCRPS (Table 3). Generally, the production of N₂O in soils

is greatly affected by soil water status and temperature (Williams et al., 1992; Smith et al., 2003; Schindlbacher et al., 2004). Under conventional paddy fields, nitrification of NH_4^+ was suppressed by lack of oxidized soil conditions, and denitrification, which could be potentially produce in prevailing anaerobic conditions, was probably restricted

⁵ by the high shortage of NO₃⁻ or reacted completely (i.e., the reduction of N₂O to N₂), and thus, resulting in decreased N₂O emissions. This explanation was supported by the higher NH₄⁺ contents and at the same time lower NO₃⁻ contents for the CUN plots relative to the GUN plots (Fig. 2). In addition, the GUN treatment not only kept soil moisture at approximately 90 % WFPS, but also increased soil temperature (Fig. 1), both favored the production and emission of N₂O.

Although GUN significantly increased N_2O emissions, both GCM and GUM under GCRPS reduced annual N_2O emissions substantially (Table 3). Similar inhibitory effects of organic fertilizer amendments on N_2O emissions have been observed in other laboratory and field studies (Pathak et al., 2002; Yao et al., 2010; Qin et al., 2010). In

- ¹⁵ contrast, some other studies observed that the incorporation of organic fertilizer stimulated N₂O emissions or that N₂O emissions were not affected at all (e.g., Gentile et al., 2008; Wang et al., 2011). In general, as was also observed in our study, the N₂O emissions were highly dependent on soil mineral N (NH₄⁺ and NO₃⁻) availability in paddy fields (Liu et al., 2010; Yao et al., 2010). Consistent with expectations, soil mineral N
- ²⁰ contents were lower in the GCM and GUM since mineral N was slowly released from organic manure mineralization, as compared to the rapid release of mineral N with urea application in GUN, and consequently decreasing N₂O emissions. In addition, the significantly increased CH₄ emissions from GCM indicated the apparently prevailing anaerobic conditions in soils. At the same time, the higher soil temperature and
- DOC contents in GCM would further stimulate soil denitrifier activity and efficiency during the denitrification process, which benefits nitrate finally transformed into N₂ rather than the mid-product of N₂O (Millar and Baggs, 2005; Qin et al., 2010). Also, Kramer et al. (2006) conducted lab and field studies and found that soils with organic fertiliza-

tion exhibited higher potential denitrification rates, greater dentrification efficiency and higher N_2 emissions than the soils farmed with synthetic N fertilizers.

Over the entire rice-fallow system, the direct emission factors of N_2O were 1.52 % and 4.01 % due to urea applications under conventional paddy and GCRPS, respec-

- ⁵ tively, which is obviously higher than the IPCC default value of 0.30% for rice paddy fields and 1% for upland croplands (IPCC, 2006). Compared with the reported annual direct emission factors of 0.34–2.50% for N₂O in Chinese rice-upland rotation systems (Zheng et al., 2000, 2004; Zou et al., 2005b; Liu et al., 2010; Yao et al., 2010, 2013b), the direct emission factor is comparable for the CUN but relatively high for the GUN.
- ¹⁰ However, N₂O emissions from GUN were substantially reduced by manure application, giving annual direct emission factors of 0.087 % and 0.50 % under GCM and GUM, respectively. This further confirms that the application of organic fertilizers indeed decreases annual direct emission factors of N₂O as was also reported in previous studies (e.g., Pathak et al., 2002; Yao et al., 2010).

15 4.4 Grain yield, NEGE and implications for assessing GCRPS

20

In the present study, the grain yields under conventional paddy and GCRPS ranged from 5.49 to 7.92 Mg ha⁻¹ and 6.05 to 7.97 Mg ha⁻¹, respectively, which is within the range of rice grain yields for the conventional paddy (3.63 to 8.77 Mg ha⁻¹) and GCRPS (4.27 to 9.97 Mg ha⁻¹) estimated at a large regional scale, central China (Liu et al., 2013). Across the GNN and GUN treatments under GCRPS, the grain yield was estimated to be an average of 6.87 Mg ha⁻¹, which is approximately 3% higher than that of the conventional paddy. This result is comparable to previous estimates on the stim-

ulating effect of GCRPS on grain yields (Qu et al., 2012; Liu et al., 2013). Although GCRPS reduced the greenhouse effect of CH_4 emission by 83% when

²⁵ practiced together with urea application (i.e., GUN), this reduction was fully compensated by increases (approximately 136%) in annual emissions of the even more potent GHG N₂O (Table 5). Similar results have been observed in other studies where increased N₂O emissions substantially offset the decreases in CH₄ emissions resulted

from changes in water managements (Xu et al., 2004; Kreye et al., 2007; Hou et al., 2012; Yang et al., 2012). For the GCM and GUM treatments, however, the increased N₂O emissions did not compensate for the climate benefits from decreased CH₄ emissions, resulting in the lower annual aggregate emissions of CH₄ and N₂O compared to

- the GUN and CUN. In addition, as estimated in this study, GCRPS tended to reduce the C loss in soils (Table 5). Averaging across GNN and GUN under GCRPS, the annual NEGE was 8.83 Mg CO₂-eq ha⁻¹ yr⁻¹, which is 19 % lower as compared to the conventional paddy, indicating that water-saving GCRPS management tended to reduce net greenhouse effect from rice-based cropping systems. Within the GCRPS, GUM and
- ¹⁰ GCM further decreased the annual NEGE, compared to the GNN and GUN. Based on the results of grain yield and NEGE, therefore, water-saving GCRPS management, particularly when practiced together with organic fertilizer amendments, is beneficial for increasing grain yields while simultaneously reducing total GHG emissions during crop production.

15 5 Conclusions

The introduction of water-saving GCRPS technology has a high potential to increase rice grain yields and to significantly reduce irrigation water demand for rice cultivation. However, it remained unknown if this new rice production technique will in the final end not lead to pollution swapping of GHG emissions, i.e., from CH₄ emissions for conven-²⁰ tional paddy fields to increased soil N₂O and CO₂ emissions for ground cover rice production systems. This study provides for the first time an assessment of the net effect of GCRPS on the annual GHG balance. Averaging across all the fertilizer treatments, GCRPS greatly increased annual N₂O emissions and significantly decreased annual

CH₄ emissions, while GCRPS had no effect on annual soil CO₂ emissions, compared
 to the conventional paddy. By integrating CH₄ and N₂O emissions and soil carbon sequestration capacities, the estimated annual net greenhouse gas exchanges in all the GCRPS treatments tended to be lower as compared to the conventional paddy,

highlighting the potential feasibility of GCRPS in reducing net greenhouse effect. Overall, from the environmental sustainability point of view for the hilly rice-based cropping system, the implementation of water-saving GCRPS technology, particularly practicing together with organic fertilizer supplement, seems to be a very promising approach to increase grain yields, reducing aggregate emissions of CH₄ and N₂O and to stimulate soil carbon sequestration.

The Supplement related to this article is available online at doi:10.5194/bgd-11-8925-2014-supplement.

Acknowledgements. This project was funded by the Ministry of Science and Technology
 of China (2012CB417106), the National Nature Science Foundation of China (51139006, 41075109, 41305129). We wish to thank the Shiyan Municipal Bureau of Agriculture for routine maintenance of the field trial. We are also grateful to Haibo Dong, Rui Wang and Yongfeng Fu for their assistance in the field and laboratory measurements.

References

- Adviento-Borbe, M. A. A., Haddix, M. L., Binder, D. L., Walters, D. T., and Dobermann, A.: Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems, Glob. Change Biol., 13, 1972–1988, 2007.
 - Akiyama, H., Yagi, K., and Yan, X. Y.: Direct N₂O emissions from rice paddy fields: summary of available data, Global Biogeochem. Cy., I9, GB1005, doi:10.1029/2004GB002378, 2005.
- Banger, K., Tian, H., and Lu, C.: Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields?, Glob. Change Biol., 18, 3259–3267, 2012.

Belder, P., Bouman, B. A. M., Cabangon, R., Guoan, L., Quilang, E. J. P., Li, Y. H., Spiertz, J. H. J., and Tuong, T. P.: Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia, Agr. Water Manage., 65, 193–210, 2004.

²⁵ Bhattacharyya, P., Roy, K., Neogi, S., Chakravorti, S., Behera, K., Das, K., Bardhan, S., and Rao, K.: Effect of long-term application of organic amendment on C storage in relation to

global warming potential and biological activities in tropical flooded soil planted to rice, Nutr. Cycl. Agroecosys., 94, 273–285, 2012.

- Bodelier, P. L. E. and Laanbroek, H. J.: Nitrogen as a regulatory factor of methane oxidation in soils and sediments, FEMS Microbiol. Ecol., 47, 265–277, 2004.
- ⁵ Bond-Lamberty, B. and Thomson, A.: A global database of soil respiration data, Biogeosciences, 7, 1915–1926, doi:10.5194/bg-7-1915-2010, 2010.
 - Bouman, B. A. M.: A conceptual framework for the improvement of crop water productivity at different spatial scales, Agr. Syst., 93, 43–60, 2007.
- Bouman, B. A. M. and Tuong, T. P.: Field water management to save water and increase its productivity in irrigated lowland rice, Agr. Water Manage., 49, 11–30, 2001.
- Bouman, B. A. M., Hengsdijk, H., Hardy, B., Bindraban, P. S., Tuong, T. P., and Ladha, J. K. (Eds.): Water-wise Rice Production, Proceedings of the International Workshop on Waterwise Rice Production 8–11 April 2002, Los Baños, Philippines, International Rice Research Institute, Los Baños (Philippines), 356 pp., 2002.
- Bouman, B. A. M., Humphreys, E., Tuong, T. P., and Barker, R.: Rice and water, Adv. Agron., 92, 187–237, 2006.
 - Cai, Z., Yan, X., Yan, G., Xu, H., Tsuruta, H., Yagi, K., and Minami, K.: Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management, Plant Soil, 196, 7–14, 1997.
- ²⁰ Cai, Z., Shan, Y., and Xu, H.: Effects of nitrogen fertilization on CH₄ emissions from rice fields, Soil Sci. Plant Nutr., 53, 353–361, 2007.
 - Castro, M. S., Steudler, P. A., Melillo, J. M., Aber, J. D., and Bowden, R. D.: Factors controlling atmospheric methane consumption by temperate forest soils, Global Biogeochem. Cy., 9, 1–10, 1995.
- Dittert, K., Lin, S., Kreye, C., Zheng, X., Xu, Y., Lu, X., Shen, Q., Fan, X., and Sattelmacher, B.: Saving water with Ground Cover Rice Production Systems (GCRPS) at the price of increased greenhouse gas emissions?, in: Water-Wise Rice Production, edited by: Bouman, B. A. M., Hengsdijk, H., Hardy, B., Bindraban, P. S., Tuong, T. P., and Ladha, J. K., International Rice Research Institute, Los Baños, Philippines, 197–206, 2002.
- Dobbie, K. E., McTaggart, I. P., and Smith, K. A.: Nitrous oxide emissions from intensive agricultural systems: variations between crops and seasons, key driving variables, and mean emission factors, J. Geophys. Res., 104, 26891–26899, 1999.

- 8952
- Igbal, J., Hu, R., Lin, S., Hatano, R., Feng, M., Lu, L., Ahamadou, B., and Du, L.: CO₂ emission in a subtropical red paddy soil (Ultisol) as affected by straw and N-fertilizer applications: a case study in southern China, Agr. Ecosyst. Environ., 131, 292-302, 2009.
- ence Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marguis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK and New York, NY, USA, 498-540, 2007. 30
- Gas Inventories [M], Vol. 4, Agriculture, Forestry and Other Land Use, IPCC/IGES, Hayama, Japan, 2006. IPCC (Intergovernmental Panel on Climate Change): Climate Change 2007: The Physical Sci-
- ASA, CSSA, SSSA, Madison, WI, 63-78, 1993. 20 Hutchinson, G. L. and Mosier, A. R.: Improved soil cover method for field measurement of nitrous oxide fluxes, Soil Sci. Soc. Am. J., 45, 311-316, 1981. IPCC (Intergovernmental Panel on Climate Change): IPCC Guidelines for National Greenhouse
- Hutchinson, G. L. and Livingston, G. P.: Use of chamber systems to measure trace gas fluxes, in: Agricultural Ecosystem Effects on Trace Gases and Global Climate Change, edited by: Harper, L. A., Moiser, A. R., Duxburg, J. M., and Rolston, D. E., ASA Special Publication 55,
- Hu, X., Su, F., Ju, X., Gao, B., Oenema, O., Christie, P., Huang, B., Jiang, R., and Zhang, F.: Greenhouse gas emissions from a wheat-maize double cropping system with different nitro-15 gen fertilization regimes, Environ. Pollut., 176, 198-207, 2013.
- in response to water management of paddy fields located in Southeast China, Chemosphere, 89, 884-892, 2012. Hu, R., Hatano, R., Kusa, K., and Sawamoto, T.: Soil respiration and net ecosystem production in an onion field in central Hokkaido, Japan, Soil Sci. Plant Nutr., 50, 27-33, 2004.

10

25

and organic residue inputs on nitrogen transformations, Soil Biol. Biochem., 40, 2375-2384, 2008. Hou, H., Peng, S., Xu, J., Yang, S., and Mao, Z.: Seasonal variations of CH₄ and N₂O emissions

Camb. Philos., 63, 433-462, 1988. 5 Gentile, R., Vanlauwe, B., Chivenge, P., and Six, J.: Interactive effects from combining fertilizer

Chinese water management regime, Atmos. Environ., 45, 1095–1101, 2011. Fog, K.: The effect of added nitrogen on the rate of decomposition of organic matter, Biol. Rev.

Dong, H., Yao, Z., Zheng, X., Mei, B., Xie, B., Wang, R., Deng, J., Cui, F., and Zhu, J.: Effect of

ammonium-based, non-sulfate fertilizers on CH₄ emissions from a paddy field with a typical

Discussion 11, 8925-8967, 2014 Paper Water-saving ground cover rice production system Discussion Z. Yao et al. Paper **Title Page** Abstract Introduction Conclusions References Discussion Paper **Tables Figures** Back Close Full Screen / Esc **Discussion** Paper **Printer-friendly Version** Interactive Discussion

BGD

- Kramer, S. B., Reganold, J. P., Glover, J. D., Bohannan, B. J. M., and Mooney, H. A.: Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils, P. Natl. Acad. Sci. USA, 103, 4522–4527, 2006.
- Kreye, C., Dittert, K., Zheng, X., Zhang, X., Lin, S., Tao, H., and Sattelmacher, B.: Fluxes of
- methane and nitrous oxide in water-saving rice production in north China, Nutr. Cycl. Agroecosyst., 77, 293–304, 2007.
 - Lee, D. K., Doolittle, J. J., and Owens, V. N.: Soil carbon dioxide fluxes in established switchgrass land managed for biomass production, Soil Biol. Biochem., 39, 178–186, 2007.
 - Linquist, B., Van Groenigen, K., Adviento-Borbe, M., Pittelkow, C., and Van Kessel, C.: An
- ¹⁰ agronomic assessment of greenhouse gas emissions from major cereal crops, Glob. Change Biol., 18, 194–209, 2012.
 - Liu, L. and Greaver, T. L.: A review of nitrogen enrichment effects on three biogenic GHGs: the CO_2 sink may be largely offset by stimulated N_2O and CH_4 emission, Ecol. Lett., 12, 1103–1117, 2009.
- Liu, M., Lin, S., Dannenmann, M., Tao, Y., Saiz, G., Zuo, Q., Sippel, S., Wei, J., Cao, J., Cai, X., and Butterbach-Bahl, K.: Do water-saving ground cover rice production systems increase grain yields at regional scales?, Field Crop. Res., 150, 19–28, 2013.
 - Liu, S., Qin, Y., Zou, J., and Liu, Q.: Effects of water regime during rice-growing season on annual direct N_2O emission in a paddy rice-winter wheat rotation system in southeast China,
- ²⁰ Sci. Total Environ., 408, 906–913, 2010.

25

- Maestre, F. T. and Cortina, J.: Small-scale spatial variation in soil CO₂ efflux in a Mediterranean semiarid steppe, Appl. Soil Ecol., 23, 199–209, 2003.
- Millar, N. and Baggs, E. M.: Relationships between N₂O emissions and water-soluble C and N contents of agroforestry residues after their addition to soil, Soil Biol. Biochem., 37, 605–608, 2005.
- Minamikawa, K. and Sakai, N.: The effect of water management based on soil redox potential on methane emission from two kinds of paddy soil in Japan, Agr. Ecosyst. Environ., 107, 397–407, 2005.

Nishimura, S., Sawamoto, T., Akiyama, H., Sudo, S., and Yagi, K.: Methane and nitrous oxide

³⁰ from a paddy field with Japanese conventional water management and fertilizer application, Global Biogeochem. Cy., 18, GB2017, doi:10.1029/2003GB002207, 2004.

- Pathak, H., Bhatia, A., Prasad, S., Singh, S., Kumar, S., Jain, M. C., and Kumar, U.: Emissions of nitrous oxide from rice-wheat systems of Indo-Gangetic plains of India, Environ. Monit. Assess., 77, 163–178, 2002.
- Qin, Y., Liu, S., Guo, Y., Liu, Q., and Zou, J.: Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China, Biol. Fert. Soils, 46, 825–834, 2010.

5

10

- Qu, H., Tao, H., Tao, Y., Liu, M., Shen, K., and Lin, S.: Ground cover rice production system increases yield and nitrogen recovery efficiency, Agron. J., 104, 1399–1407, 2012.
- Raich, J. W. and Tufekcioglu, A.: Vegetation and soil respiration: correlations and controls, Biogeochemistry, 48, 71–90, 2000.
- Rochette, P. and Gregorich, E. G.: Dynamics of soil microbial biomass C, soluble organic C and CO₂ evolution after three years of manure application, Can. J. Soil Sci., 78, 283–290, 1998.
 Sass, R. L., Fisher, F. M., Ding, A., and Huang, Y.: Exchange of methane from rice fields: national, regional, and global budgets, J. Geophys. Res., 104, 26943–26951, 1999.
- Schindlbacher, A., Zechmeister-Boltenstern, S., and Butterbach-Bahl, K.: Effects of soil moisture and temperature on NO, NO₂ and N₂O emissions from European forest soils, J. Geophys. Res., 109, D1702, doi:10.1029/2004JD004590, 2004.
 - Shang, Q., Yang, X., Gao, C., Wu, P., Liu, J., Xu, Y., Shen, Q., Zou, J., and Guo, S.: Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping sys-
- tems: a 3-year field measurement in long-term fertilizer experiments, Glob. Change Biol., 17, 2196–2210, 2011.
 - Smith, K. A., Ball, T., Conen, F., Dobbie, K. E., Massheder, J., and Rey, A.: Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes, Eur. J. Soil Sci., 54, 779–791, 2003.
- Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice, C., Scholes, B., and Sirotenko, O.: Agriculture, in: Climate Change 2007: Mitigation, Contribution of work group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Metz, B., Davidson, O. R., Bosch, P. R., Dave, R., and Meyer, L. A., Cambridge University Press, Cambridge, UK and New York, NY, USA, 497–540, 2007.
 - Wang, J., Rothausen, S., Conway, D., Zhang, L., Xiong, W., Holman, I., and Li, Y.: China's waterenergy nexus: greenhouse-gas emissions from groundwater use for agriculture, Environ. Res. Lett., 7, 014035, doi:10.1088/1748-9326/7/1/014035, 2012.

Wang, W., Dalal, R., Reeves, S., Butterbach-Bahl, K., and Kiese, R.: Greenhouse gas fluxes from an Australian subtropical cropland under long-term contrasting management regimes, Glob. Change Biol., 17, 3089–3101, 2011.

Williams, E. J., Hutchinson, G. L., and Fehsenfeld, F. C.: NO_x and N₂O emissions from soil, Global Biogeochem. Cy., 6, 351–388, 1992.

Xie, B., Zheng, X., Zhou, Z., Zhu, B., Chen, X., Shi, Y., Wang, Y., Zhao, Z., Liu, C., Yao, Z., and Zhu, J.: Effects of nitrogen fertilizer on CH₄ emission from rice fields: multi-site field observations, Plant Soil, 326, 393–401, 2010.

5

Xu, Y., Shen, Q., Li, M., Dittert, K., and Sattelmacher, B.: Effect of soil water status and mulching

- on N₂O and CH₄ emission from lowland rice field in China, Biol. Fert. Soils, 39, 215–217, 2004.
 - Yagi, K., Tsuruta, H., Kanda, K., and Minami, K.: Effect of water management on methane emission from a Japanese rice paddy field: automated methane monitoring, Global Biogeochem. Cy., 10, 255–267, 1996.
- Yan, X., Cai, Z., Ohara, T., and Akimoto, H.: Methane emission from rice fields in mainland China: amount and seasonal and spatial distribution, J. Geophys. Res., 108, 4505, doi:10.1029/2002JD003182, 2003.

Yan, X., Akiyama, H., Yagi, K., and Akimoto, H.: Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergov-

ernmental Panel on Climate Change Guidelines, Global Biogeochem, Cycles, 23, GB2002, doi:10.1029/2008GB003299, 2009.

Yang, S., Peng, S., Xu, J., Luo, Y., and Li, D.: Methane and nitrous oxide emissions from paddy field as affected by water-saving irrigation, Phys. Chem. Earth, 53–54, 30–37, 2012.

Yao, Z., Zheng, X., Xie, B., Liu, C., Mei, B., Dong, H., Butterbach-Bahl, K., and Zhu, J.: Compar-

- ison of manual and automated chambers for field measurements of N₂O, CH₄, CO₂ fluxes from cultivated land, Atmos. Environ., 43, 1888–1896, 2009.
 - Yao, Z., Zhou, Z., Zheng, X., Xie, B., Mei, B., Wang, R., Butterbach-Bahl, K., and Zhu, J.: Effects of organic matter incorporation on nitrous oxide emissions from rice-wheat rotation ecosystems in China, Plant Soil, 327, 315–330, 2010.
- Yao, Z., Zheng, X., Dong, H., Wang, R., Mei, B., and Zhu, J.: A 3-year record of N₂O and CH₄ emissions from a sandy loam paddy during rice seasons as affected by different nitrogen application rates, Agr. Ecosyst. Environ., 152, 1–9, 2012.

Yao, Z., Zheng, X., Wang, R., Xie, B., Butterbach-Bahl, K., and Zhu, J.: Nitrous oxide and methane fluxes from a rice-wheat crop rotation under wheat residue incorporation and notillage practices, Atmos. Environ., 79, 641–649, 2013a.

Yao, Z., Zheng, X., Wang, R., Dong, H., Xie, B., Mei, B., Zhou, Z., and Zhu, J.: Greenhouse gas fluxes and NO release from a Chinese subtropical rice-winter wheat rotation system under nitrogen fertilizer management, J. Geophys. Res.-Biogeo., 118, 623–638, 2013b.

Zheng, X., Wang, M., Wang, Y., Shen, R., Gou, J., Li, J., Jin, J., and Li, L. T.: Impacts of soil moisture on nitrous oxide emission from croplands: a case study on the rice-based agroecosystem in Southeast China, Chemosphere, 2, 207–224, 2000.

¹⁰ Zheng, X., Han, S., Huang, Y., Wang, Y., and Wang, M.: Re-quantifying the emission factors based on field measurements and estimating the direct N₂O emission from Chinese croplands, Global Biogeochem. Cy., 18, GB2018, doi:10.1029/2003GB002167, 2004.

Zhou, S. D., Herzfeld, T., Glauben, T., Zhang, Y. H., and Hu, B. C.: Factors affecting Chinese farmers' decisions to adopt a water-saving technology, Can. J. Agr. Econ., 56, 51–61, 2008.

¹⁵ Zou, J., Huang, Y., Jiang, J., Zheng, X., and Sass, R. L.: A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer application, Global Biogeochem. Cy., 19, GB2021, doi:10.1029/2004GB002401, 2005a.

Zou, J., Huang, Y., Lu, Y., Zheng, X., and Wang, Y.: Direct emission factor for N₂O from ricewinter wheat rotation systems in southeast China, Atmos. Environ., 39, 4755–4765, 2005b.

20

Table 1. Field management practices for different fertilizer treatments in the conventional paddy and ground cover rice production systems over the rice-growing season of 2011.

		N appl	lication rate (kg N ha	a ⁻¹)			
Treatment ^a		Urea Chicken manure		Total	Water management ^b	Transplanting and harvest date	
Conventional paddy							
	CNN	0	0	0	F-D-F	29 Apr and 22 Sep 201	
	CUN	150	0	150	F-D-F	29 Apr and 22 Sep 201	
Ground cover rice production system (GCRPS))		
	GNN	0	0	0	Moist but no standing water	29 Apr and 22 Sep 201	
	GUN	150	0	150	Moist but no standing water	29 Apr and 22 Sep 201	
	GCM	0	150	150	Moist but no standing water	29 Apr and 22 Sep 201	
	GUM	75	75	150	Moist but no standing water	29 Apr and 22 Sep 201	

^a CNN, the control that received no N fertilizer under conventional paddy; CUN, urea application at a common rate of 150 kg N ha⁻¹ under conventional paddy; GNN, the control that received no N fertilizer under GCRPS; GUN, urea application at a common rate of 150 kg N ha⁻¹ under GCRPS; GCM, solely chicken manure application at a common rate of 150 kg N ha⁻¹ under GCRPS; GUM, urea + chicken manure (1 : 1 nitrogen basis) (75 kg N ha⁻¹ + 75 kg N ha⁻¹) under GCRPS.

^b F, flooding; D, midseason drainage.

Table 2. Straw (S) and grain (G) yields as well as total (T) yields (straw + grain, in Mg ha⁻¹), and plant uptake of C (in Mg ha⁻¹) and N (in kg ha⁻¹) at physiological maturity for different fertilizer treatments in the conventional paddy and ground cover rice production systems (GCRPS).

	Conventional paddy		GCRPS			
	CNN	CUN	GNN	GUN	GCM	GUM
Straw yield	5.50 ± 0.21 a	8.35 ± 0.36 bc	5.75 ± 0.46 a	8.69 ± 0.45 c	6.17 ± 0.52 ad	7.32 ± 0.47 bd
S_C uptake	2.19 ± 0.07 a	3.33 ± 0.11 bc	2.24 ± 0.17 a	3.52 ± 0.19 c	2.44 ± 0.19 a	2.95 ± 0.18 b
S_N uptake	24.6 ± 2.9 a	64.4 ± 3.6 b	29.9 ± 2.2 a	66.5 ± 7.8 b	50.2 ± 4.1 c	48.1 ± 2.7 c
Grain yield	5.49 ± 0.17 a	7.92 ± 0.21 b	6.05 ± 0.06 c	7.70 ± 0.19 b	7.43 ± 0.15 b	7.97 ± 0.16 b
G_C uptake	2.34 ± 0.07 a	3.41 ± 0.09 b	2.58 ± 0.02 c	3.33 ± 0.08 b	3.22 ± 0.05 b	3.46 ± 0.08 b
G_N uptake	48.2 ± 4.0 a	81.5±4.0 b	61.8±1.9 c	87.7 ± 3.6 b	94.2±4.1 b	93.9 ± 5.7 b
Total yield	10.99 ± 0.34 a	16.27 ± 0.56 b	11.80 ± 0.40 a	16.39 ± 0.43 b	13.60 ± 0.60 c	15.29 ± 0.63 b
T_C uptake	4.52 ± 0.13 a	6.74 ± 0.20 b	4.82 ± 0.15 a	6.84 ± 0.17 b	5.67 ± 0.24 c	6.40 ± 0.26 b
T_N uptake	72.8 ± 6.9 a	145.9 ± 3.3 b	91.6 ± 4.0 a	154.2 ± 8.9 b	144.4 ± 7.9 b	141.9±5.2 b

Data shown are means ± standard errors of 3-spatial replicates. Definitions of abbreviations for the different fertilizer treatments are shown in the footnotes of Table 1 and in the text. Different letters within the same row indicate statistically significant differences among treatments.

Table 3. Seasonal and annual cumulative fluxes of methane $(CH_4, in kg C ha^{-1})$ and nitrous oxide $(N_2O, in kg N ha^{-1})$ and direct emission factors of applied nitrogen (in %) for different fertilizer treatments in the conventional paddy and ground cover rice production systems (GCRPS).

	Conventional paddy		GCRPS			
	CNN	CUN	GNN	GUN	GCM	GUM
Rice season						
Raised bed_CH ₄	-	-	6.19 ± 0.64	7.51 ± 1.04	41.1 ± 0.98	13.8 ± 0.26
Furrow_CH ₄	-	-	2.07 ± 0.29	3.26 ± 0.14	3.09 ± 0.38	3.67 ± 0.37
Area weighted CH ^a	52.3 ± 3.8 a	35.2 ± 4.6 b	5.36 ± 0.51 c	6.65 ± 0.86 c	33.4 ± 0.85 b	11.8±0.13 c
Raised bed_N ₂ O	-	-	0.13 ± 0.01	5.12 ± 1.2	0.17 ± 0.01	0.40 ± 0.07
Furrow_N ₂ O	-	-	0.070 ± 0.01	1.08 ± 0.17	0.089 ± 0.01	0.065 ± 0.01
Area weighted N ₂ O ^a	0.089±0.01 a	0.21 ± 0.05 b	0.12 ± 0.01 ab	4.30 ± 0.96 c	0.15 ± 0.01 ab	0.33 ± 0.06 d
Emission factor	_	0.082	-	2.79	0.023	0.14
Fallow season						
CH4	–0.54 ± 0.25 a	–0.51 ± 0.08 a	–0.92 ± 0.13 a	-0.81 ± 0.06 a	-0.84 ± 0.06 a	-0.50 ± 0.10 a
N ₂ O	0.45 ± 0.02 a	2.60 ± 0.75 b	0.51 ± 0.14 a	2.34 ± 0.64 bc	0.60 ± 0.04 a	1.05 ± 0.32 ac
Annual rotation						
CH ₄	51.7 ± 3.6 a	34.6 ± 4.5 b	4.43±0.61 c	5.84 ± 0.89 c	32.6 ± 0.89 b	11.3±0.14 c
N ₂ O	0.54 ± 0.02 a	2.81 ± 0.80 b	0.62 ± 0.13 a	6.64 ± 1.5 c	0.76 ± 0.05 a	1.38 ± 0.27 b
Emission factor	_	1.52	-	4.01	0.087	0.50

^a The area weighted emissions of CH₄ and N₂O for the GCRPS treatments in the rice season were calculated on the basis of the areal extent of furrow and raised bed. Data shown are means ± standard errors of 3-spatial replicates. Definitions of abbreviations for the different fertilizer treatments are shown in the footnotes of Table 1 and in the text. Different letters within the same row indicate statistically significant differences among treatments.

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Table 4. Stepwise multiple linear regression analysis between soil environmental variables and the emissions of methane (CH_4), nitrous oxide (N_2O) or heterotrophic respiration (CO_2) for different fertilizer treatments during the rice-growing season.

	Regression function ^a	$R^{2 b}$	P ^c	Number of cases
Methar	ne (CH ₄)			
CNN	$F_{CH_4} = -8.59 - 0.003Eh + 0.44ST$	0.46	< 0.01	60
CUN	$F_{CH_4} = -4.18 - 0.003Eh + 0.23ST$	0.35	< 0.01	60
GNN	NS	NS	NS	
GUN	NS	NS	NS	
GCM	F _{CH4} = 1.38 – 0.003Eh	0.29	< 0.05	60
GUM	F _{CH4} = 0.39 – 0.001Eh	0.26	< 0.05	60
Nitrous	s oxide (N ₂ O)			
CNN	NS	NS	NS	
CUN	$F_{N_2O} = 1.33 + 0.96NH_4^+$	0.22	< 0.05	20
GNN	NS	NS	NS	
GUN	$F_{N_2O} = -569.3 + 41.6NH_4^+ + 17.6ST$	0.77	< 0.01	20
GCM	$F_{N_2O} = -9.80 + 0.58ST$	0.10	< 0.05	60
GUM	$F_{N_2O} = -25.3 + 0.84 \text{NH}_4^+ + 1.01 \text{ST}$	0.59	< 0.01	20
Hetero	trophic respiration (CO ₂)			
CNN	$F_{\rm CO_2} = 26.0 + 0.088 {\rm Eh}$	0.46	< 0.01	20
CUN	$F_{\rm CO_2} = 22.7 + 0.11 \rm Eh$	0.51	< 0.01	20
GNN	F _{CO2} = 320.6 – 3.27WFPS	0.74	< 0.01	60
GUN	$F_{\rm CO_2} = 328.1 - 3.39 \rm WFPS$	0.91	< 0.01	60
GCM	<i>F</i> _{CO2} = 293.3 – 2.94WFPS	0.72	< 0.01	60
GUM	$F_{CO_2} = 251.2 - 2.52 \text{WFPS}$	0.75	< 0.01	60

^a Eh, soil redox potential; ST, soil temperature; WFPS, water-filled pore space; NS, not significant.

^b Coefficient of determination.

^c Values indicate significance level. Definitions of abbreviations for the different fertilizer treatments are shown in the footnotes of Table 1 and in the text.

Table 5. Net primary production (NPP) and soil heterotrophic respiration (R_h) and their estimated net ecosystem exchanges (NEE) of CO₂, and the estimated C sequestration capacity in soil and aggregate emissions of CH₄ and N₂O and their estimated net ecosystem greenhouse gas exchanges (NEGE) for the conventional paddy and ground cover rice production systems under different fertilizer treatments over the annual rice-fallow cropping rotation.

	NPP	R _h	NEE	Incorporated C	Harvested C	C sequestration	Aggregate emission	NEGE
	(Mg C ha ⁻¹)	of CH_4 and N_2O (kg CO_2 -eq ha ⁻¹)	$(Mg CO_2 - eq ha^{-1})$					
Rice s	eason							
CNN	4.98 ± 0.14 a	1.00 ± 0.01 ab	–3.97 ± 0.14 a	0	4.52 ± 0.13 a	–0.55±0.01 a	1785 ± 125 ab	3.81 ± 0.07 a
CUN	7.42 ± 0.22 b	0.91 ± 0.05 a	–6.51 ± 0.23 b	0	6.74 ± 0.20 b	–0.23 ± 0.05 b	1271 ± 137 b	2.13 ± 0.13 bc
GNN	5.40 ± 0.17 a	1.05 ± 0.02 ab	–4.35 ± 0.18 a	0	4.82 ± 0.15 a	–0.47 ± 0.03 a	234 ± 19 c	1.97 ± 0.13 c
GUN	7.67 ± 0.19 b	0.98 ± 0.08 a	-6.68 ± 0.25 b	0	6.84 ± 0.17 b	–0.16 ± 0.09 b	2236 ± 475 a	2.83 ± 0.52 b
GCM	6.35 ± 0.27 b	1.17 ± 0.05 b	–5.18±0.24 c	2.04	5.67 ± 0.24 b	1.55 ± 0.03 c	1186 ± 29 b	–4.51 ± 0.14 d
GUM	7.17 ± 0.29 b	0.96 ± 0.07 a	-6.21 ± 0.32 b	1.02	6.40 ± 0.26 b	0.83 ± 0.09 d	546 ± 30 c	–2.51 ± 0.31 d
Fallow	season							
CNN	0	1.91 ± 0.03 a	1.91 ± 0.03 a	0	0	–1.91 ± 0.03 a	193 ± 16 a	7.21 ± 0.10 a
CUN	0	2.04 ± 0.11 a	2.04 ± 0.11 a	0	0	–2.04 ± 0.11 a	1202 ± 355 b	8.67 ± 0.44 b
GNN	0	1.67 ± 0.05 ab	1.67 ± 0.05 ab	0	0	-1.67 ± 0.05 ab	207 ± 62 a	6.33 ± 0.13 a
GUN	0	1.49 ± 0.14 b	1.49 ± 0.14 b	0	0	–1.49±0.14 b	1069 ± 302 bc	6.53 ± 0.49 a
GCM	0	1.99 ± 0.14 a	1.99 ± 0.14 a	0	0	-1.99 ± 0.14 a	254 ± 19 a	7.56 ± 0.53 ab
GUM	0	1.92 ± 0.17 a	1.92 ± 0.17 a	0	0	-1.92 ± 0.17 a	475 ± 150 ac	7.51 ± 0.50 ab
Annual rotation								
CNN	4.98 ± 0.14 a	2.92 ± 0.03 ab	–2.06 ± 0.16 a	0	4.52 ± 0.13 a	–2.47 ± 0.04 a	1978 ± 111 ad	11.02 ± 0.07 a
CUN	7.42 ± 0.22 b	2.94 ± 0.15 ab	-4.47 ± 0.25 bc	0	6.74 ± 0.20 b	–2.27 ± 0.15 a	2473 ± 239 ac	10.80 ± 0.53 a
GNN	5.40 ± 0.17 a	2.72 ± 0.05 ab	-2.67 ± 0.13 ad	0	4.82 ± 0.15 a	–2.14 ± 0.03 ab	440 ± 67 b	8.30 ± 0.11 b
GUN	7.67 ± 0.19 b	2.47 ± 0.20 a	-5.19±0.28 c	0	6.84 ± 0.17 b	-1.65 ± 0.22 b	3305 ± 713 c	9.37 ± 1.01 ab
GCM	6.35 ± 0.27 b	3.16 ± 0.19 b	-3.19 ± 0.22 d	2.04	5.67 ± 0.24 b	–0.44 ± 0.17 c	1440 ± 45 d	3.05 ± 0.67 c
GUM	7.17 ± 0.29 b	2.87 ± 0.23 ab	-4.30 ± 0.34 b	1.02	6.40 ± 0.26 b	-1.09 ± 0.22 d	1022 ± 123 d	5.00 ± 0.72 c

Data shown are means ± standard errors of 3-spatial replicates. Definitions of abbreviations for the different fertilizer treatments are shown in the footnotes of Table 1 and in the text. Different letters within the same column indicate statistically significant differences among treatments during the periods of rice and fallow seasons as well as annual rotation.

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Figure 2. Seasonal dynamics in (**a**–**b**) soil ammonium (NH_4^+), (**c**–**d**) nitrate (NO_3^-) and (**e**–**f**) dissolved organic carbon (DOC) contents (mean ± standard errors) for different fertilizer treatments in the conventional paddy and ground cover rice production systems during the rice-fallow rotation cycle of 2011–2012. SDW: soil dry weight. Definitions of abbreviations for the different fertilizer treatments are shown in the footnotes of Table 1 and in the text.

Discussion Paper

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Figure 3. Seasonal dynamics in **(a–f)** methane (CH₄) fluxes (mean \pm standard errors) for different fertilizer treatments in the conventional paddy and ground cover rice production systems during the rice-fallow rotation cycle of 2011–2012. The CH₄ fluxes during the rice season as shown in panels **(c–f)** were measured from the raised beds of ground cover rice production systems. Definitions of abbreviations for the different fertilizer treatments are shown in the footnotes of Table 1 and in the text.

Figure 4. Relationships of **(a)** methane (CH₄) emissions to soil temperature and redox potential (Eh) in the control of conventional paddy rice production system (i.e., CNN) and **(b)** nitrous oxide (N₂O) emissions to soil temperature and ammonium (NH₄⁺) contents in the urea application treatment of ground cover rice production system (i.e., GUN) during the rice-growing season. The mesh plots are the result of multiple linear regression analysis according to the equations presented in Table 4.

Figure 5. Seasonal dynamics in **(a–f)** nitrous oxide (N₂O) fluxes (mean ± standard errors) for different fertilizer treatments in the conventional paddy and ground cover rice production systems during the rice-fallow rotation cycle of 2011–2012. The N₂O fluxes during the rice season as shown in panels **(c–f)** were measured from the raised beds of ground cover rice production systems. Definitions of abbreviations for the different fertilizer treatments are shown in the footnotes of Table 1 and in the text.

Figure 6. Seasonal dynamics in **(a–f)** soil heterotrophic respiration (R_h) emissions (mean ± standard errors) from bare soils of different fertilizer treatments in the conventional paddy and ground cover rice production systems during the rice-fallow rotation cycle of 2011–2012. Definitions of abbreviations for the different fertilizer treatments are shown in the footnotes of Table 1 and in the text.

